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The critical dynamics at phase transitions in liquids with long-range forces, behaving like 77777,
is considered. The critical dimension in these systems is d. = 2+ o, leading to nonclassical behavior
of the transport coefficients at d = 3 in the region 1 < ¢ < 1.5 and classical behavior in static
properties. We calculate the transport coefficients for pure liquids and mixtures in the hydrodynamic
region. The critical exponent of the order-parameter Onsager coefficient z and of the shear viscosity
z, fulfill zx + 2, = 0 — 1 in d = 3. In the crossover region from critical to “classical” dynamical
behavior for & — 1 the dynamical transient exponents go to zero and nonasymptotic effects become
dominant in the Kawasaki amplitude. A direct measurement of o in the dynamics is proposed.

PACS number(s): 64.70.Fx, 05.70.Jk, 64.70.Ja

I. INTRODUCTION

It is not yet clear whether in ionic solutions “classical”
critical behavior due to long-range interactions has been
observed or one just has seen a crossover to Ising-like
asymptotic critical behavior. Recent experiments gave
support for classical static critical behavior at the con-
solute points in ionic solutions [1-5]. Since the conso-
lute point and the gas-liquid critical point (called plait
point in a mixture) lie in the same universality class,
similar behavior can be expected for these transitions in
pure liquids and liquid mixtures. It is suspected that
the Coulomb interaction (to some extent screened) or
other molecular multipole interactions lead to an effec-
tive interaction of long range of the type r 3¢ with
0 < o < 2, but the specific type of the effective inter-
action remains unclear. It has been shown in [6] that in
the case of 0 < o < 1.5 the static exponents are classical,
vy =1v = %, and n = 2 — o fulfilling the usual scal-
ing laws leading to 8 = 1 and o = 0. Therefore static
measurements of v, 3, or a give no further information
about the parameter o governing the range of the effec-
tive interaction. However, it is important to note that
the classical critical exponents v and 7 do depend on the
parameter 0. Thus direct measurements of the static ex-
ponents v or 7 may give information on the type of the
effective interaction. However, this seems to be not so
easy since the correlation length £ appears in the static
susceptibility as £~7. Therefore, in a neutron scattering
experiment of the k-dependent static susceptibility as a
function of the temperature t (¢t = |T — T.|/T.) the pa-
rameter o drops out. However, the k£ dependence of the
susceptibility would provide one with o (at 7. the sus-
ceptibility is proportional to k~7). To our knowledge no
such experiments have been performed so far.

Light scattering measurements of dynamical quantities
such as the mass diffusion at the consolute point have
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been performed [3-5]. No theory has been presented so
far for the dynamical critical behavior in these solutions
and we therefore extend recent work [7,8] on the critical
behavior in liquid mixtures with short-range interactions
to the case of ionic solutions with long-range interaction.
We shall see that the parameter o enters the dynami-
cal quantities and should in principle be observable in
these experiments. We find that the dynamical behav-
ior is nonclassical for 1 < o < 1.5 and different from
that in the universality class of the short-range interact-
ing systems. For o < 1 the Onsager coefficients (OCs)
are nonsingular, for o > 1 two OCs show singular behav-
ior, the one for the shear viscosity L;, which diverges as
(T - TC)_%’L, and the one for the order parameter (the
entropy density at the gas-liquid critical point or the con-
centration fluctuation at the consolute point) Lq;, which
diverges as (T —T.)~ # . Therefore, measurements of the
temperature dependence of the transport coefficients in
the hydrodynamic region can also give direct information
on the parameter 0. Moreover, the critical exponents in-
crease almost linearly from o = 1 to their values in liquids
with short-range interactions at o = 2.

II. MODEL

Let us start with the Ginzburg-Landau-Wilson Hamil-
tonian # for the order parameter ¢, which is the entropy
density o for the gas-liquid critical point in the pure fluid
as well as for the plait point in the mixture

$=Ni(o—b,) (1)

(there should be no confusion with the parameter o of
the interaction) or the concentration fluctuation c for the
consolute point

¢ =Ni(c—b.) (2)
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with N4 Avogadro’s number; b, and b. are static con-
stants, by which third order terms in the Hamiltonian
have been transformed away. Then we end up with the
Hamiltonian in Fourier space [6]

Hey = /ddk%(" + k%) drd_k

+ / d’k / dek’ / ddk”%¢k¢k,¢ku¢_k_k,_k” )
()

Although in the classical region o < 1.5 the fourth order
coupling is irrelevant, this term has to be taken into ac-
count in the region of spontaneous order. To this Hamil-
tonian we add Gaussian terms for the other variables to
be considered in dynamics, namely, at the plait point the
concentration fluctuation at constant entropy density

R

where A is the difference in chemical potential of the two
components of the mixture. At the consolute point we
must add the entropy density at constant concentration

() ) o

and in both cases the transverse current j

Has = [ ez laa®)a(b) +asi®i(-b).

Nonlinear couplings between the order parameter and the
second thermodynamic variable are irrelevant since we
are in the classical regime of the statics. So the total
Hamiltonian reads

H=He+Hq;j- ()

We note again that for calculations in the nonordered
region T' > T, this Hamiltonian is purely Gaussian.

The order-parameter susceptibility diverges as t~1, but
the susceptibilities involving the other thermodynamic
variable are finite (since the specific heat exponent a =
0), thus for the pure liquid (R is the gas constant)

RT (0o
war =0 2L () ®
and at the plait point
o= = (57)
(9)
RT ( Oc
{ag)e(k = 0) = —= (;ﬁ)h-

Standard thermodynamic manipulations show that away
from azeotropic criticality we have (823-) pr ™~ t~1 [9,10].
At the consolute point we have

w.="1 (55), » tw0-=ZL(55) - a0

Let us now turn to the dynamics, which is our main
concern. We must consider the densities of the conserved
hydrodynamic variables, which also contain the order pa-
rameter. We then recover model H for the pure fluid or
model H' for mixtures [11]

] 0H 0H o0H
6= Louvzw + L012V27S‘q* - yo(Vi¢)_6j'_ + 04, (11)
oH OH OH
. 207 20H i
G = Lo12V 7 + Lo22V 5q 90(Viq) 57 + 0, (12)
LY, Y )

. H
ji= ’r(L(,,-vZ%JT + 90(Ve)— + yo(V‘I)E +6;). (13)

6¢

The matrix Lo and the coefficient Lg; contain the
independent OCs, which are related to the fluctuating
forces ©; via Einstein relations. The mode coupling is

go = RT/N;% and 7T is the projector transverse to the k
direction. Note that model H contains only the equations
for ¢ and j without the coupling to the second variable
g- In the following we treat model H' within the field
theoretic renormalization group formalism. Proceeding
in the standard way we have to renormalize the dynami-
cal vertex functions. Note that all static renormalization
constants are 1 for o < 1.5. Then only the renormaliza-
tion factors Zy,;,%,7 = 1,2, and Z1; may remain differ-
ent from unity. The renormalization and regularization
is performed as in [12], which means that we have to set
the irrelevant parameters (the parameters with negative
naive dimension) equal to zero in extracting the poles
from the vertex functions. From the structure of the
graph contributions to the renormalization we find that
only L;; and L; renormalize, which leads to a singular
behavior in the corresponding OCs. L;3 and Ly; stay un-
renormalized and merely enter as constant parameters.
We introduce dynamical parameters for the model by
the diffusion time ratio wo and the mode coupling fo

wo = _ Loz fo=—2 (14)
~ VLo11Loz2’ v/ Lo11Lo;j
They renormalize as
1 e, —1 __1
wo=wZpi, fo=fuiZpizg}, (15)

with € = 2+ 0 — d and a reference wave number . Thus
we see that the dynamical critical dimension above which
the mode coupling terms are irrelevant is given by

ddyremic — 9 4 4. (16)

This may be compared with d%t2ti¢ = 20, which is always
below the dynamical critical dimension. Therefore in the
region 1 < ¢ < 1.5 the statics is classical whereas the
dynamics shows nonclassical critical behavior. For 0 <
o < 1 the OCs remain uncritical.

The change of the renormalized parameters under
renormalization is described by the flow equations, which

-1

contain the ¢ functions ¢; = um’;f‘ . No static ¢ func-
tion appears since we are above the static critical dimen-
sion. In one-loop order the ¢ functions read
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o = 1+af2 L = (1 +0) f2?
In =793 67 LT "2 +0)2+0) 1—-w?
(17)

In the asymptotic region the parameters reach their fixed
point values and the values of the ¢ functions determine
the critical exponents. From the flow equations at d = 3
(1is related to the inverse correlation length)

dw 1 i 1
ZW —"_iwCLu’ l(_ii—_zf(o. 1+CLu +<Lj)y
(18)
the fixed point values are found to be w* = 0 and
2= 12(4+0)(2+ o) (0 - 1). (19)

(48 + 120 + 02)(1 + o)

For the pure fluid w(l) = 0 has to be put in for the ¢
functions; as a consequence the same fixed point values
are obtained. Thus the asymptotic critical behavior is
the same in all three cases of phase transitions in the
liquids. We define renormalized OCs as (note that no
static parts appear in these definitions)

l i

In) = Lu@exn [ G
(20)

1 i

L) = Lewp [ ¢,

with the one-loop expressions
1 \?
- —_— — 2
Ly (l) = Lu [1 <2+0) f (l)] ) (21)

0(24 + 460 + 170% + 03)
242+ 0)2(4 + 0)?

£2()
- wz(l)) ‘
(22)

III. TRANSPORT COEFFICIENTS

The transport coefficients (T'Cs) are identified by com-
paring the model equations with the usual hydrodynamic
equations. The vertex functions by which they are ex-
pressed can be split into a static and a genuine dynam-
ical part as a result of fluctuation dissipation theorems.
This allows us to treat static and dynamic effects sep-
arately. For the temperature dependence of the static
functions we can insert the experimental results, whereas
for the dynamic parameters we can use the flow equa-
tions. These are calculated in one-loop order.

In the pure fluid the singular transport coefficents are
the thermal conductivity and the shear viscosity

w(t) = Lui(t),  (t) = L;(¢) (23)

with the susceptibility x(t) given by the specific heat at
constant pressure. Asymptotically the TCs reach the be-
havior
nwt_?, f~t . (24)
The exponents in one-loop order are found to be (re-
member € = 2 + 0 — d; thus for d = 3 we have simply
e=0—1)

12(4 + o)
=277 (51
™= Brieror@ W
(25)
2
loa
L ———
= Brleroz@ Y

If we take, e.g., 0 = 1.5, then for d = 3, z) = 0.484; this
value decreases to zero at ¢ = 1. So as expected we find
weaker singularities in the OCs compared to the short-
range interacting case mainly due to the shorter distance
from the dynamic critical dimension (see Fig. 1).

From (18) one finds in the region where the stable fixed
point has a nonzero fixed point value for f, the exact
relation for the critical exponents

Tyx+ Ty =0—-1. (26)

Since z, is small, the approximation z) = o — 1 may
be used as a first step in the experimental analysis.
Thus measurements of the asymptotic temperature de-
pendence of the thermal conductivity in a pure fluid
would directly determine the exponent o.

In the mixture at the plait point singular behavior ap-
pears in the isothermal diffusion constant D, in the ther-
mal conductivity in the absence of mass flow x, in the
thermal diffusion ratio k7, and in the shear viscosity i

D(t) = X%m[Lzz +a2Lyi () + 2aLya], (27)

one-loop order
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FIG. 1. The dynamical critical exponents of the or-

der-parameter Onsager coefficient z) and of the shear vis-
cosity z, as functions of the range o of the interaction [see
Egs. (25)].
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(1) = — gy o (0L — L (28)
kT(t) = B%[le + ai/u(t)] -T (g—;—) R
T dc
= —a’—D-(—tj(Lzz + G,le) - T (51—,'—)?6 y (29)

and 7(t) = L;(t), with the static functions x.(t) =
(g—Z)pT and a = (%)P A Asymptotically we obtain for
the behavior of the TCs
D~t1_%\, K = K, kT~t_H:-A. (30)
Large ratios of éuia%ﬂéll can mask the asymptotic be-
havior as is observed in short-range interacting mixtures
13|.
[ '%‘he temperature dependence of the OCs is described
in our theory by the flow equations (18), the expressions
(20) and (21), the connection of the flow parameter to the
temperature distance ¢t = t5 at constant chemical poten-
tial A, and the relation of t. (the temperature distance
at constant concentration) to ta.

At the consolute point the concentration fluctuation
instead of the entropy fluctuation is the order parameter,
leading also to another relation of the TCs to the OCs,
namely,

_Lu) w(t) = L3 _ L1z
D(t) = (@) (t) = Loz @ kr(t)=T 0k
(31)

The asymptotic behavior is the same as at the plait point,
but nonasymptotic effects play a much smaller role in this
case.

The Kawasaki amplitude [14] in d = 3 is defined for
pure liquids by the following ratio involving the thermal
diffusion D1 = k/x and the shear viscosity

() = 221060 2)

and asymptotically reaches a universal value, since from
(18) we have =) + z, = 0 — 1. We calculated R in one-
loop order. Its asymptotic value relative to the value in
liquids with short-range interaction reads at d = 3

R 1

R_g == 17'(0'), (33)

12(c—1)(4+
ro) < 2484120 +0°)(1 +0) 1 - ey
- 19(4 +0)(2 + o) 1-2

38
1-— (a-—l)aig4+460+17¢72+03)
2(48+120+0%)(2+0)(4+0)(1+0)

-2
1-5

X

(34)

In the range 2 > o > 1 (o) decreases from r(2) = 1 only
by 4% and one therefore can approximate its value by 1.

The amplitude is formally divergent when one approaches
the dynamical critical dimension. This is an artifact of
the asymptotic expression. One has to consider in the
case of a small fixed point value of f and because of
small slow transients the nonasymptotic expression of the
amplitude [15]. The dependence of this nonasymptotic
amplitude on o and on the flow parameter [/ is shown in
Fig. 2 for the pure liquid [w(l) = 0 in Eqgs. (18)] in the
lowest approximation
R,(1) 24

R, ~ 1970 (33)

At the consolute point because of the different order
parameter the amplitude is defined with the mass diffu-
sion D instead of the thermal diffusion Dr

Roft) = ZOI0EL) (36)

and takes on the same asymptotic value.

IV. DISCUSSION

We have calculated the critical behavior of long-range
interacting ionic solutions near the critical point. Com-
parison with the results for the case of short-range inter-
actions in one-loop approximation shows that the genuine
dynamical singular behavior is weakened, as expected for
long-range forces. First and most important the dynami-
cal critical dimension is lowered and therefore its distance
to d = 3 is smaller, and second the prefactors in the € ex-
pansion of the dynamical critical exponents itself become
slightly o dependent. Note that our results for the dy-
namical quantities are also valid in the region 1.5 < o < 2
since the neglected contributions from the statics appear
only in two-loop order (in fact one has to cope with the
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FIG. 2. The ratio of the nonasymptotic Kawasaki ampli-
tude for the long-range interacting liquid to the asymptotic
value of this amplitude for the short-range interacting liquid
as a function of the flow parameter ! [see Eq. (35) with Egs.
(18)] for different values of o. The initial values are f(0) = 0.5
and w(0) = 0. For values of o near 1 the effect of the slow
transients proportional to o — 1 can be seen.
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problem that static and dynamic have different critical
dimensions).

It is interesting to look for the consequences of our
results on the interpretation of light scattering experi-
ments. Since these cover the hydrodynamic k¢ < 1 as
well as the critical k£ > 1 region, we have to consider the
asymptotic scaling function Q,(k€), commonly referred
to as the “Kawasaki function” for o = 2 [14]. Let us for
this purpose approximate z by o —1 (which corresponds
to the usual result of mode coupling theory) and z, by
0. The order-parameter dispersion can be written as (in
pure liquids and in mixtures at the consolute point)

wolk, &) = LE:8) o (37)

x(k,§)

involving the order-parameter OC L;; and the order-
parameter susceptibility x. The dynamical critical expo-
nent z is then defined by the order-parameter frequency
at T,

we(k,00) ~ k*. (38)
Since x(k,&) = ﬁ; and Lq1(k,00) ~ k%> we find

z =2+ 0 —z) = 3 independent of 6. We may also write

“mewo (39)

defining the scaling function . similar to the case of
short-range interacting liquids. For ¢ = 2 and within
mode coupling theory [14] the function equals

w¢(k7 E) = R;-

Q(y) = Zy“zll +9* + (y* —y~!)arctan(y)].  (40)

The limits of the Kawasaki function

Q:(0)=1,  Q,(k€ — 00) ~ k¢ (41)
are independent of o. Of course, the scaling function
depends on o, but we expect this dependence to be weak
(this will be checked in the future). Lacking the explicit
form of ©, one may in a first analysis of an experiment
make the following approximation: Replace Q, by €.,
take for the ratio of the Kawasaki amplitudes (33) its
value with r(0) = 1, and use for R} the mode coupling
value. Then (42) simplifies to

we(k,&) 1 kpT L
B o g el (42)

From this relation we suggest to extract the temperature
dependence of £, which then leads to the exponent v = i—
o has to be treated as a parameter which should be cho-
sen “optimally,” whatever this means. One choice may
be such that the region in which the asymptotic power
law is observed is maximal. We should remark, how-
ever, that near 0 = 1 these asymptotic relations have to
be replaced by their nonasymptotic counterparts. A cal-
culation of these functions has to be done in future. We
also note that there may be long-range order interactions
with several values of 0. The asymptotics is governed by
the smallest value of o but crossovers from one value of
o to another may be possible. This may make the inter-
pretation of the experimental results difficult.
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